
206094

Southern Hemisphere In Situ Observations of OH, HO_, CIO

and BrO from the ER-2 Aircraft

for the 1994 ASHOE Mission

Final Technical Report

NASA-Langley Agreement No. NAG-l-1609

April 11, 1994-April 10, 1995

Submitted to

National Aeronautics and Space Administration
from

The President and Fellows of Harvard College

c/o Office for Sponsored Research

Holyoke Center, Room 458
1350 Massachusetts Avenue

Cambridge, Massachusetts 02138

James G. Anderson, Principal Investigator

Department of Chemistry

Harvard University

12 Oxford Street

Cambridge, Massachusetts 02138

January 30, 1996





Note: Funding for this researchwas split betweentwo grants from NASA Langley:

NAG-l-1617 (for field research)and NAG-l-1609 (development/analysiswork in

supportof the field mission). This report is submitted as the Final Technical Report for

both grants.

The NASA Arctic Southern Hemisphere Ozone Experiment (ASHOE) campaign

involved forty flights of the ER-2 from Ames Research Center, Moffett Field, CA;

Barbers Point Naval Air Station, Hawaii; Nadi Field, Fiji; and Christchurch, New

Zealand. The responsibility of the Harvard research team was the in situ observation of

the radicals OH, HO2, CIO and BrO, with corollary observations of ozone and water

vapor. These radicals constitute the reactants in the rate limiting steps of the catalytic

cycles that control the destruction rate of ozone in the lower stratosphere. The instruments

performed very well throughout the course of the ER-2 flights for the ASHOE campaign.

The data analysis is complete for that mission and the data have been submitted to the

mission data network for open access by the scientific community. Key results prepared

for publication are attached as appendices to this report.

A summary of the first order scientific conclusions that emerged from the research

done under this grant are as follows:

1. For the first time, the concentration of the key hydrogen and halogen radicals OH,

HO2, C10 and BrO were determined on a global scale extending from the arctic circle

to the antarctic circle, over the altitude domain of the ER-2. That domain extends

from 15-20 km altitude, covering a critical part of the lower stratosphere.

2. Simultaneous, in situ measurements of the concentrations of OH, HO2, (210, BrO, NO

and NO2 demonstrate the predominance of odd-hydrogen and halogen free radical

catalysis in determining the rate of removal of ozone in the lower stratosphere over

the complete ASHOE mission. This extends to the global scale the "first look" data

obtained during the NASA Stratospheric Photochemistry and Dynamics Experiment

(SPADE), executed out of Ames Research Center in June 1993. This represents a

major rearrangement of our understanding with respect to the hierarchy of dominant

catalytic cycles controlling ozone loss in the lower stratosphere. For the past twenty





years, it has been assumedthat nitrogenradicalsdominate the destructionrate of

ozonein the lower stratosphere.

3. Throughoutthealtitudeandlatituderangecoveredby ASHOE, it wasdeterminedthat

a singlecatalytic cycle,HO2+ 03 --_OH + 202,accountedfor onehalf of thetotal03

removalin this regionof theatmosphere.Halogenradicalcatalytic cycleswerefound

to accountfor onethird of theozoneloss,andnitrogenradicalswerefoundto account

for 20% of the loss.

4. Simultaneousobservationsof the full complementof radicals, tracers,ozone,and

water vapor during ASHOE demonstratedquantitatively the coupling that exists

betweenthe rate limiting radicalsand other reactivespeciesin the photochemical

reaction network. Specifically, the concentrationsof CIO and HO2 are inversely

correlatedwith the concentrationof NO×.This carriesthe implication that the NO×

effluent from the proposedHigh SpeedCivil Transportmay be lessdestructiveto

stratospheric ozone than had previously been thought. ASHOE brought this

conclusionforward for thefirst timeona globalbasis.

5. The density of BrO was measuredon a global scaleduring ASHOE in the lower

stratosphere.It was foundthatbromineis responsiblefor 55-65% of the local rateof

catalytic destruction of ozone by reactions involving bromine and chlorine.

Normalizing calculatedlossratesto total available inorganicbromine and chlorine

explicitly demonstratesthat bromineis 60-80 times moreefficient than chlorine in

removing ozone in the lower stratosphere.An inferred value of total inorganic

bromineis in excellentagreementwith measurementsof their sourcespecies,organic

brominecompoundsin thetroposphere.
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Introduction

Bromine compounds contribute to halogen catalyzed ozone loss in the lower stratosphere with

remarkable potency relative to more abundant chlorine compounds on a per atom basis (1, 2). This

increased efficiency arises from three causes. First, the organic source molecules (often referred to as

CBry) that transport bromine from the troposphere to the stratosphere are relatively short-lived

compared with chlorinated source gases (3). Thus in the stratosphere bromine is converted into forms

capable of destroying ozone more rapidly than chlorine. Second, once bromine has been released from

its source molecules, more than half is present during daylight in radical forms (BrO, Br) capable of

efficient O3 removal, whereas only a few percent of chlorine is present as radicals (4). Finally, the rates

for two limiting reactions for catalytic 03 loss involving bromine, BrO + HO2 and BrO + CIO, are very

rapid compared to rates for analogous reactions involving chlorine, CIO + HO2 and C10 + CIO.

In 1987 the Montreal Protocol introduced provisions, further amended in London and

Copenhagen, to regulate future emission of CBrF3, CBrCIF2 and C2Br2F4 (Halons 13 01,1211 and

2402), the industrially produced bromine compounds that posed the most substantial threat to the ozone

layer. Approximately half of CBry is comprised of CH3Br (methyl bromide) which has both natural and

anthropogenic sources. Knowledge of the relative contribution of these two sources of CH3Br is

important to future regulatory decisions and is the subject of much controversy and uncertainty (5).

Thus, while there is clear evidence from measurements of organic chlorine compounds in the

troposphere that future 03 loss by chlorine will likely decrease if the Protocol and its amendments are

followed (6), the future course for bromine induced 03 loss is unclear.

Measurements in the stratosphere are required to test hypotheses concerning the abundance and

speciation of bromine compounds (7). Previous efforts have been hampered compared with similar work

for chlorine compounds because atmospheric concentrations of bromine species are very low. Mixing
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ratiosof total CBry in the troposphere range from 16 to 30 pptv, whereas the corresponding

concentration for chlorine compounds is - 3700 pptv (3). Here we present an analysis of in situ BrO

measurements obtained in the lower stratosphere from the NASA ER-2 aircraft between February and

November of 1994 during the Airborne Southern Hemisphere Ozone Experiment and Measurements fi_

Assessing the Effects of Stratopheric Aircraft (ASHOE/MAESA) mission (8). Simultaneous

measurements of hydrogen (OH and HO2), nitrogen (NO and NO2) and chlorine (CIO) radical species

and long-lived tracers of atmospheric transport (CCIsF, N20, CO2, SF6, CBrC1F2, Os, H20 and

particles) are crucial for interpreting the BrO observations. Measurements of the rate limiting radicals in

the dominant catalytic 03 removal cycles allow the local 03 destruction rate to be calculated (9).

In situ BrO measurements and tracer correlations

Measurements of [BrO] (10) are obtained by resonance fluorescence detection of Br atoms

produced by the in situ titration of BrO with NO (11). The instrument is calibrated in our laboratory

with known [Br], generated by reacting a known concentration of Cl atoms with excess Br2. The

estimated accuracy of the [BrO] measurements is + 40% (2_). The precision of an individual

measurement is typically 4- 2 pptv (2_) using relatively long averaging times (-1 hour). The selection of

averaging intervals is based upon simultaneous tracer measurements. Typically four to five

measurements of [BrO] are produced for each eight hour flight.

Interpretation of the [BrO] measurements is aided by accurate estimates of the mixing ratio of

inorganic bromine (Bry). Similar to chlorine, we expect stratospheric [Bry] to be non-linearly

proportional to the integrated exposure of air parcels to ultraviolet radiation, which leads (either directly

or indirectly) to production of Bry from decomposition of source gases (12). Here we relate BrO (and

Bry) with the disappearance of organic source gases using CCi3F (CFC-11), whose loss mechanism and

loss rate are most similar to that of the aggregate of the organic bromine species (13).
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All of the [BrO] measurements obtained during ASHOE/MAESA in daylight (solar zenith angles

(SZA) < 85 °) are plotted as a function of [CCI3F] in the upper panel of Fig. 1. A relatively tight

correlation between [BrO] and [CCI3F] is observed even though a wide range of photochemical

environments were encountered. The data were obtained during portions of winter, spring and fall in

both the northern (to 59°N latitude) and southern (to 65°S latitude) hemispheres and for SZA ranging

from 9 ° to 85 °. We note that the maximum values of [BrO] measured here are approximately 50%

larger than observed previously with this instrument (14).

Halogen induced Oa removal rates

The direct observation of [BrO], the rate limiting radical for catalytic destruction of O3 by

bromine compounds, obtained simultaneously with measurements of [HO2], [CIO], [NO2] and [03]

provide a means to calculate the 03 removal rate due to hydrogen, nitrogen, chlorine, bromine and

oxygen containing species (9). Here we focus on 03 loss due to chlorine and bromine via the nine

catalytic.cycles listed in Table 1. The first reaction listed for each cycle is the rate limiting step for 03

removal. For reactions having multiple pathways, only those leading to 03 loss are listed. In parenthesis

we give the approximate fraction of the total rate used here (15).

The fractional contribution to the 03 loss for each halogen cycle, computed from simultaneous

observations of the radicals, is shown as a function of latitude in Fig. 2 (16). The loss rates have been

averaged over a :24 hr period using previously observed dependencies of radical concentrations with

SZA (9). This figure provides a snapshot of the 'observed' partitioning of 03 loss between chlorine and

bromine species for air masses sampled by the ER-2. It is of interest to note the predominance of the

intra-halogen BrO+CIO cycle outside of the tropics. Bromine is involved in 55% to 65% of the total

halogen induced loss rate (17). The BrO+HO2 rate limited cycle is the predominant bromine catalyzed

03 loss cycle in the tropics.
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Inorganic bromine partitioning

The ER-2 observations provide a means to evaluate the consistency of the BrO measurements

with modeled partitioning of inorganic bromine (Bry) and measurements of organic bromine (CBry). The

daytime partitioning of Bry is primarily controlled by the photochemical reactions shown in Fig. 3. The

relative abundance of each reservoir is approximately proportional to the area of the box. It is

noteworthy that each of the non-bromine reactants shown in Fig. 3, with the exception of formaldehyde

(CH20), is measured simultaneously (18). The flux (pptv hour "_) through each reaction path is given in

parentheses for typical, mid-latitude conditions at ER-2 cruise altitudes (18 to 20 km). Photolysis rates

are calculated from a radiative transfer model that takes into account variations in overhead ozone and

albedo along the flight track of the ER-2 (19). Rate constants, absorption cross sections and quantum

yields are taken from the JPL 1994 evaluation (20), except for recent work described below.

Recent laboratory work suggests important revisions in key photochemical processes that

govern production and loss of BrONO2 and HOBr. The heterogeneous reaction BrONO2 +

H20--+ HOBr + HNO3 on sulfate aerosol has beeen found to occur rapidly (21). This process does not

strongly influence Bry partitioning during the day, particularly when aerosol loading is light. The rate of

the BrO + HO2 reaction, the main production channel for HOBr, is approximately half the value

recommended by the J-PL 1994 evaluation (22). A consensus of new cross section measurements for

HOBr photolysis, for which estimates had been based on aqueous phase spectra, leads to a value of

JHoBr- 0.53 x JHoNo (23). New cross section measurements ofBrONO2 photolysis lead to a 16%

increase in its recommended J value (24). Taken together these changes increase the relative abundance

of BrO within the Bry family.

The very short lifetimes (< 15 min) of all the Bry species except HBr permits the use of a model

(as in Fig. 3) that assumes instantaneous photochemical stationary state (PSS) to predict the

partitioning of Bry (25). The inferred partitioning of BrO relative to the other Bry gases is determined by
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tile first orderphotochemicalreactionrateslinkingtheBryspeciesandis independentof measured

[BrO] aswell asknowledgeof [Bry]. The calculated partitioning is shown as a function of latitude in

Fig. 4. The results have been filtered to illustrate the average trend with latitude. The PSS model

predicts BrO is - 65% of [Bry] during daytime, nearly independent of latitude. BrONO2 is predicted to

be the second most abundant daytime species. HOBr is a small fraction of daytime [Bry], although at

night heterogeneous hydrolysis of BrON02 on aerosols may convert nearly all Bry to HOBr (21). In the

tropics, the combination of low [03] and [NO2] results in [Br] becoming a non-negligible fraction (10%)

of [Bry], at the expense of [BrONO2]. This analysis is consistent with the conclusions, drawn from

measurements of [HBr] in the stratosphere (7), that I-[Br is a minor Bry species in the lower stratosphere

(26). Estimated values of [BrCI] and [Br2] are negligible at all latitudes during these observations.

A comparison of inorganic and organic bromine measurements

The measurements of [BrO] can be used to estimate [Bry] by scaling each [BrO] value.by the

predicted partitioning: [Bry] radical = [BrO] mc_su'ea/ ([BrO]/[Bry]) predictea, where [Bry] radicaldenotes our

estimate of [Bry] based upon observations of radicals. This estimate is important because it can be used

to examine the consistency between observations of inorganic and organic bromine. Values of [Bry] r"aic"t

derived here are plotted as a function of [CC13F] in the lower panel of Fig. 1. The solid line represents

an estimate of [Bry] (denoted [Bry] s°u_c°) based upon measurements of organic bromine compounds in

the upper troposphere, [CBry] ° - 18 ppt (27). The first order loss of CBry in the stratosphere is

calculated relative to CC13F by adopting a loss rate for each organic bromine species based upon

calculated photolysis rates and loss by reaction with OH (28). The dashed line is the estimated [Bry] s°urcc

that provides the best fit to the [Bry] r_die"lobservations, given by assuming [CBry] ° = 23 ppt. Although

there is agreement between the [Bry] _'di"l observations and the best estimate of [Bry] s°u_¢ (the solid line

in Fig. 1), given the estimated error in [Bry] radi¢_t(+80%, --45%), these [BrO] measurements and this

analysis suggest there is - 30% more bromine in the stratosphere than indicated by the tropospheric

R. M Stimpfle et al., Bromine Catalyzed Removal of Ozone 6



[CBry]measurements(29). The resultssummarizedin Fig. 1. extend out- quantitative understanding of

the conversion of organic bromine to inorganic forms in the atmosphere and of'the abundance of

bromine in the atmosphere.

03 Loss by Halogens

To quantify the 03 loss tendency of bromine relative to chlorine, the parameter ' c£ ', given by the

ratio of the sums of the individual loss rates involving bromine and chlorine, normalized by the

respective abundances of the inorganic reservoirs, has been defined:

c_(season, altitude, latitude) = _ k_ [BrO] [X_ ]/_j kj [CIO] IX j][Bry] [Cly] (1)

For bromine (chlorine) the index i (J) is summed over reactions 1-5 (5-9) ofBrO (CIO) with reactant Xi

(Xj) given in Table 1. et is a function of season, altitude and latitude, as well as other variables that can

influence the partitioning of active and inactive forms of bromine and chlorine. These results provide a

local, instantaneous measurement of ct in the lower stratosphere ranging from values of 60 to 80, as

shown in the lower panel of Fig. 2. [Bry] is calculated from a fit of the [Bry] r_di=_lobservations derived

here. [Cly] is calculated as a function of [CCisF] (30). Fig. 2 provides direct confirmation of the

effectiveness of Bry relative to Cly in Os destruction in the lower stratosphere (31). Policy decisions

regarding regulation of global emissions of CBry species require globally averaged values of ct, a

quantity that can only be provided by a model that integrates over latitude, season and altitude (32).

These observations demonstrate that bromine species are as important as chlorine species at

contributing to halogen induced ozone removal in the lower stratosphere. The consistency among

measurements of inorganic and organic bromine compounds gives confidence that our understanding of

the partitioning and burden of bromine in the stratosphere is correct. However, more precise and

accurate in situ measurements of all inorganic bromine species are required for more discriminating tests

of bromine photochemistry. Significant questions remain concerning the importance of heterogeneous
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reactions,especiallyin highaerosolloadingenvironmentsfollowingvolcanicactivity.Additional

measurementsof organicbrominecompoundsin thestratosphereanduppertropospherewill increase

our understandingof the processby whichbromineis transportedto andreleasedin thestratosphere.

Therelatedissueof quantifyingsourcesandsinksof organicbrominespecies(e.g.,CH3Br)in the

troposphereis of paramountimportancein obtaininga completeunderstandingof therole of brominein

theenvironment,andhow that role dependsonanthropogenicactivity.

R.M.Stimpfleet al., Bromine Catalyzed Removal of Ozone 8



References and notes

.

2.

3

4.

.

7.

.

.

10.

11.

12.

13.

S. C. Wofsy, M. B. McEIroy and Y. L. Yung, Geophys. Res. Lett. 2, 215 (1975).

For a recent assessment of bromine in the atmosphere and other issues effecting the

stratospheric ozone layer see: D. L. Albritton, R. T. Watson and P. J. Aucamp, Scentific

Assessnzent of Ozone Depletion: 1994, World Meteorological Organization Global Ozone

Research andMonitoring Project, Report No. 37 (WMO, Geneva, 1995).

J. A. Kaye and S. A. Penkett, Report on Concentrations, Lifetimes, and Trends of CFCs,

Halons, and Related Species, NASA Reference Publication 1339, January 1994.

The inorganic bromine species.that efficiently participate in ozone destruction are ot_en referred

to as Br.,, = Br + BrO. Total inorganic bromine is referred to as Bry = Brx + BrONO2 + HOBr +

HBr + BrC1 + 2Br2. Inorganic chlorine species are defined analogously: CI., = CI + CIO +

2CIOOC1; Cly = Clx + CIONO2 + HOCI + HCI + 2C12 + BrCI. The ratio of CI._ to Cly is typically

only a few percent throughout most of the lower stratosphere during the day. It is only during

the extraordinary situation observed in polar regions in late winter when Clx/Cly approaches

100%.

In addition to Ref. 2, see J. H. Butler, Geophys. Res. Lett. 21,185 (1994), S. A. Yvon andJ. H.

Butler, ibid, 23, 53 (1996), M. A. K. Khalil et al., J. Geophys. Res. 98, 2887 (1993), J. M.

Lobert et al., Science 267, 1002 (1995).

J. W. Elkins et al., Nature 364, 780 (1993) and R. G. Prinn et al., Science 269, 187 (1995).

For in situ observations of BrO see: W. H. Brune and J. G. Anderson, Geophys. Res. Lett 13,

1391 (1986), W. H. Brune et al., Science 242, 558 (1988), W. H. Brune et al., J. Geophys. Res.

94, 16639 (1989), D. W. Toohey et al., Geophys. Res. Lett. 17, 513 (1990), L. M. Avallone et

al., ibid, 22, 831 (1995); For balloon-borne observations of HBr or HOBr: D. G. Johnson et al.,

Geophys. Res. Lett, 22, 1373 (1995), M. Carlotti et al., ibid, 22, 3207 (1995); For ground based

column density observation ofBrO: S. Solomon et al., J. Geophys. Res. 94, 11393 (1989), M.

A. Carroll et al., ibid., 94, 16633 (1989), K. H. Arpag et al, ibid., 99, 8175 (1994), A. Wahner

and C. Schiller, ibid., 97, 8047 (1992), D. J. Fish etal., ibid., 100, 18863 (1995).

ASHOE/MAESA flights took place from Moffett Field, California (37°N, 122°W); Barbers

Point, Hawaii (22°N, 158°W); Nadi, Fiji (18°S, 178°E); and Christchurch, New Zealand (43°S,

173°E).

P. O. Wennberg et al., Science 266, 398 (1994).

Square brackets denote species concentration in density (molecules cm 3) or mixing ratio (e.g.,

pptv, parts per trillion by volume) units.

W. H. Brune, J. G. Anderson, K. R. Chart, J. Geophys. Res. 94, 16649 (1989), W. H. Brune, J

G. Anderson, K. R. Chan, ibid, 94, 16639 (1989).

E. L. Woodbridge et al., J. Geophys. Res. 100, 3057 (1995), S. R. Kawa et al., ibid., 97, 7905

(1992).

[CClaF] is measured with the Airborne Chromatograph for Atmospheric Trace Species

(ACATS-IV) instrument, accuracy = +3%, J. W. Elkins et al., Geophys. Res. Lett., in press

(1996). For flights where [CC13F] measurements are not available observed [CCI3F] vs. [N20]

correlations from flights of similar latitude coverage are used to predict [CCI3F] from [N20].

[N=O] is measured by the Airborne Tuneable Laser Absorption Spectrometer (ATLAS), J. R.

Podolske and M. Loewenstein, Appl. Opt., 32, 5324 (1993).

R. M. Stimpfle et al., Bromine Catalyzed Removal of Ozone 9



14.

15.

16.

17.

18.

19.
20.
21.

22.

23.

[BrO] measurementsreportedfiom tile AirborneAttic StratosphericExpeditionII indicate
[BrO] - 8 pptv whereasherewe report[BrO] - 12pptvfor air of similarage,L. M. Avalloneel

al., Geol)hys. Res. LelA 22, 831 (1995) and private communication. The origin of this difference,

likely instrumental, is unidentified. Eliminating possible systematic differences in the [Br]

calibrations as a source is problematic since, unlike [CI] calibrations that are normalized to

observed Rayleigh scattered signal, [Br] calibrations are specific to variables that can change

with each mission, such as the magnitude of the chamber scatter signal. Also, inherently low

signal-to-noise makes it difficult to identify systematic errors in flight data analysis. The

magnitude of the discrepancy is not significantly greater than the overall [BrO] uncertainty

which we estimate to be + 40% (+2c_)

For example, the BrO + C10 reaction has three known product channels: (1) BrCI + 02, (2) Br +

CIOO and (3) Br + OCIO. The first two reactive paths make up catalytic cycles that destroy 03

as shown in Table 1. The third path produces OCIO, that is rapidly photolyzed to produce O +

CIO. The O atom combines with 02 to reform 03 for every Br atom that reacts with 03 to

reform BrO, resulting in no net loss of O3 for the third path.

O atom concentrations are calculated from the steady state expression:

[O]" = Jo3 [O3]/(ko+o, [O: ]+ko+o3 [O3]).

The presence of the BrO+CIO reaction complicates apportionment of the halogen induced 03

loss rate between bromine and chlorine. The results of Fig. 2 show that - 55 to 65% of the

calculated halogen loss is due to bromine while simultaneously _ 60 to 50% is due to chlorine.

From this perspective the partial derivative of halogen loss with respect to bromine at constant

chlorine (or chlorine at constant bromine) is preserved.

[OH] and [HO2] are detected by laser induced fluorescence, precision = +0.05 pptv and 4-0.2

pptv, accuracy = +30% and -4-40%, respectively, P. O. Wennberg et al., Rev. Sci. Instrum. 68,

1858 (1994); [NO] is detected by 03 chemiluminescence, precision = +0.02 ppbv, accuracy =

+15%, D. W. Fahey etal., J. Geophys. Res. 94, 11299 (1989) ; [NO2] is detected byUV

photolysis followed by O3 chemiluminescence, precision = 4-0.05 ppbv, accuracy = 4-15%, R. S.

Gao el al., ibid. 99, 20673 (1994); [CIO] is detected by UV resonance fluorescence, precision =

+4 pptv in 2 min, accuracy = 4-35%, W. Brune et al., ibid., 94, 16649 (1989); [O3] is detected by

UV absorption, precision = 4-0.06 ppbv at STP, accuracy = 4-3%, M. H. Proftitt et al., ibid. 94,

16547 (1989). All estimates are 2o. The data are available on CD-ROM, S. E. Gaines, Ed.,

NASA Ames research Center, June 1995.

R. J. Salawitch et al., Geophys. Res. Left. 21, 2551 (1994).

W. B. DeMore el al., Jet Propul. Lab. Publ. 94-26 (1994)

D. R. Hanson and A. R. Ravishankara, Geophys. Res. Lett., 22, 385 (1995). The heterogeneous

reaction ofBrONO2 + H20 ---> HOBr + HNO3 is of great importance in controlling the relative

abundances of BrONO2 and HOBr during night. In addition this reaction alters the partitioning

of nitrogen species and provides a source of hydrogen radicals.

The temperature dependence of the rate constant for the HO2 + BrO reaction has recently been

measured by three different groups: M. Larichev et al., J. Phys. Chem. 99, 15911 (1995), M.

Elrod et al., submitted J. Phys. Chem. (1995) and Z. Li and S. P. Sander, private

communication, 1995. The Elrod and Li results are approximately half the value of the Larichev

results that formed the basis of the JPL '94 recommendation. For this analysis a value weighted

towards the results ofElrod et al. and Li and Sander results is adopted, k = 3.1 x 1012exp(520/T).

Recent HOBr cross section measurements include: J. J. Orlando and J. B. Burkholder, J. Phys.

Chem. 99, 1143 (1995); O. Rattigan, private communication, 1995, A. Sinha, private

communication, 1995. We use the value from Orlando from 250 to 400 nm, extended by the

R. M. Stimpfle et al., Bromine Catalyzed Removal of Ozone 10



24.
25.

26.

27.

28.

29.

30.

measurements of Sinha from 400 to 500 nm. The Rattigan value results in J values - 60% largez

than the above composite result.

J. B. Burkt!older etal., J. Geophys. Res. 100, 16793 (1995).

The PSS model calculation uses a steady state expression for [NO2] since direct measurements

are not available for all flights :

[NO,] _ =0.92 x [NO] (kNo.o,[O,]+ kNo+clo[C10]+kr,,O_ro[BrO])/J_,. %

The factor of 0.92 ±0.14 brings the value of [NO2] _ into agreement with measured [NO2] for the

flights for which we have [BrO] and [NO2] measurements. Although the magnitude of the

disagreement is within the experimental error, we use the factor of 0.92 in order to base these

calculations on the [NO2] measurement. See also: L. Jaegle el al., Geophys. Res. Left., 21, 2555

(1994) and R. S. Gao el aL, J. Geophys. Res., submitted (1995).

The HBr calculation is an approximation since production (P) and loss (L) are too slow

for steady state conditions to strictly apply. However if the ratio of P and L were integrated over

the day the results would be nearly identical since P and L are functions of [OH] and [HO2]

which have very similar diurnal behaviors. [CH20] is estimated by assuming P = [CH4] x

(kcH,t+OH [OH] + kc_i4+c, [C1]) and L = [CH20] x JcH2o. [C1] is calculated from steady state: [el]

= kclo+No [ClO][NO]/kcl+o3 [03].

The balloon-borne HBr measurements (Ref. 7) indicate the yield of HBr from the BrO+HO2

reaction cannot be more than a few per cent. An upper limit on the HBr yield measured in a

laboratory is considerably less (0.01%), A. Mellouki et al., J. Geophys. Res., 99, 22949 (1994).

The average value of the tropospheric input of organic bromine to the stratosphere in 1994 is

taken as [CBry] ° _ 18 pptv. The average densities (pptv) of five CBry species measured in the

upper troposphere near the tropics from the ER-2 aircraft in early 1992 (S. M. Schauffier et al.,

Geophys. Res. Lett. 20, 2567 (1993)) provide a measurement of [CBry] = 17.7 pptv: [CH3Br] =

9.61, [CBrF3] = 2.77, [CBrCIF2] = 2.88, [C2Br2F4] = 0.22 and [CH2Br2] = 0.72. The values for

[CH3Br] and [C2Br2F4] have been adjusted downward by 16% and 84%, respectively, due to

calibration corrections (S. Schauffier, personal communication).

We have assumed growth of 0.14 and 0.15 pptv yr _ for CBrF3 and CBrCIF2,

respectively, (J. Butler and S. Montzka, private communication) to adjust the Schauffier et al.

measurements to 1994. Measurements from the NOAA Climate Monitoring and Diagnostics

Laboratory (P. R. Wamsley, private communication) lead to a value of [CBry] ° = 18.5 pptv.

The adopted first order loss rates (sec "_) relative to a value of 1 for CCI3F are: 3 (CH3Br), 0.35

(CBrF3), 3 (CBrC1F2), 3.4 (C2Br2F4) and 10 (CH2Br2). The relative loss rates are based on 24

hour averaged values of calculated photolysis rates (Ref. 18) and [OH] in the lower

stratosphere. An age of air correction has been applied assuming a [CBry] ° growth rate of 1.7 %

yr "_ 0NOAA CMDL) and a maximum age of air of four years.

More accurate estimates of [Bry] are available from analyses based on measurements of CBry

compounds in the stratosphere. Measurements of [CBrC1F2], [CCI3F] and [SF6] by ACATS-IV

(ref. 13) during ASHOE/MAESA have been used to determine the total bromine budget in the

stratosphere (P. R. Wamsley et al., d. Geophys. Res., in prep., 1996). The peak [Bry] values

calculated using the ACATS-IV data are - 12% less than the [Bry] _°"_°°calculation (the solid line

in Fig. 1) presented here (P. R. Wamsley, private communication). Estimates of [Bry] for other

time periods are available from whole air sampling from the ER-2 aircraft (S. Schauffier, private

communication).

For [Cly] in ppbv and [CCl3F] in pptv, for latitudes poleward of 10 ° N or S, [Cly] = 2.764 -

1.057 x 10 "2 [CC13F] +4.055 x 10 "6 [CCI3F] 2 for 18<[CCl3F]<276; equatorward of 10 ° N or S,

[Cly] = 2.478 -8.640× 10 "3 [CC13F] for 230_< [ CCI3F] _<276, and [Cly] = 2.752 -9.83x10 "3

R. M. Stimpfle et al., Bromine Catalyzed Removal of Ozone 11



31.

32.

33.

[CC[3F] for 18 _< [CCI3F] _<230. The ACATS instrument measures five organic chlorine species

that make up 80% of total organic chlorine.

It is important to note that the absolute reaction rates used to calculate the results of Fig. 2 are

much lower in the tropics than at mid and high latitudes. The tropics are net 03 producing

regions, while the mid and high latitudes are net 03 loss regions.

Since o_ is steeply dependent on altitude (z), peaking at very low values of z, a globally

integrated value will likely be smaller than a local measurement in the lower stratosphere. A

typical model calculation at mid-latitudes predicts o_(z = 20 km) - 100, R. R. Garcia and S.

Solomon, J. Geophys. Res., 99, 12937 (1994). However, comparison of these results with

model calculations must be made cautiously if model input parameters are not matched to those

characteristic of these measurements and this analysis.

The authors wish to acknowledge the pilots and ground crew of the NASA ER-2 without whose

dedication these measurements would not be possible. We thank A. Sinha, M. Elrod and Z. Li

for sharing prepublished results concerning HOBr cross section or HO2+BrO rate constant

measurements and S. Schauffier for updated organic bromine measurements. Project scientists

for ASHOE/MAESA were A. Tuck for ASHOE and W. Brune for MAESA. Sponsorship of

ASHOE/MAESA came from NASA's Upper Atmospheric Research Program, M. Kurylo

program manager, and Atmospheric Effects of Aviation Project, H. Wesoky program manager.
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FigureCaptions.

Fig.1.Upperpanel,[BrO] vs. [CCI3F] for all ASHOE/MAESA flights where SZA < 85 °. Lower panel,

[Bry] r"di_'l vs. [CCIzF] where [Bry] "eic"_denotes our estimate of [Bry] based upon observations of

radicals. The solid line represents [Bry] s°°f_° based upon measurements of organic bromine compounds ii_

the upper troposphere, [CBry] ° = 18 ppt. The dashed line provides the best fit of [Bry] s°uf_c to observed

[Bry] r'di°_l calculated by assuming [CBry] ° = 23 pptv. The open circle denotes the tropospheric value of

[CCI3F]= 272 pttv.

Fig. 2. Upper panel, the observed fractional contribution of the halogen catalyzed ozone loss cycles

listed in Table 1 (identified by the rate limiting step) vs. latitude. The contributions from the BrO + O,

BrO + BrO and BrO + NO2 reactions have been combined for clarity. Contribution from the CIO + CIO

reaction is insignificant for these data. Lower panel, ot vs. latitude.

Fig. 3. The primary bromine photochemical reactions in daylight. For bromine compounds, box areas

are approximately proportional to abundances. Non-bromine reactants are identified near the arrows.

Fluxes (pptv hr "1) for each path are given in parentheses for the typical conditions: T=215 K, [M] =

2 x 10 TM molec cm "3, [HO2] = 4 pptv, [OH] = 0.75 pptv, [03] = 2 ppmv, [NO] = 200 pptv, [NO2] = 200

pttv, [ClO] = 30 pptv, [CI-I4] = 1.5 ppmv and [Bry] = 17 pptv.

Fig. 4. The partitioning of inorganic bromine (Bry) calculated using the PSS model vs. latitude. [BrC1]

and [Br2] are insignificant for these data.
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Table 1.Halogencatalyzedozonelosscycles.

1.BrO+HO2_ HOBr+O2

HOBr _ OH + Br

OH + 03 -------> HO2 + 02

Br + Os ----+ BrO + 02

2. BrO + BrO -----+ 2Br + 02 (.6)*
Br2 + 02 (.4)

Br2 _ 2Br

2Br+203 _ 2BRO+202

3. BrO + NOz .___E-+ BrONO2

BrONO2 _ Br + NOs (.5)

NO3 _-A_NO + 02 (.1)

Br+03 _ BrO+02

NO+O3 ------+ NO2 + 02

6. CIO + ttOz _ ItOCI + 02

HOCI _ OH + C1

OH+03 _ HO2+O2

C1+03 _ C10+O2

7. CIO + CIO _ CIOOCi

CIOOCI _ C1 + CIO0

CIO0 __it.+ C1 + O2

2C1+203 _ 2C10+202

8. CIO + NO2 _ CIONO2

CION02 _ Cl + NO3 (.9)

NO3 _ NO + Oz (.1)

CI + 03 ----> CIO + 02

NO+03 -----+ NO2 + 02

4. BrO + O _ Br + O: 9. CIO + O ----+ Ci + 02

Br + 03 _ BrO + 02 CI + 03 -----+ CIO + 02

5. BrO + CIO _ BrCi + Oz (.05)
Br +" CIOO (.4)

BrCI __.2L.. Br + CI

CIOO _ CI + 02

Br+03 _ BrO+02

Cl + 03 _ CIO + 02

* The approximate yield for a given reaction is listed in parenthesis where applicable.

R. M, Stimpfle et al., Bromine Catalyzed Removal of Ozone 14
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Abstract

Concentrations of OH and HO 2 have been measured in the exhaust of an Air France

Concorde and a NASA ER-2 in the lower stratosphere. Analysis of these results shows

that OH and HO 2 concentrations downstream of the exhaust point are determined by the

emission index of NOx (NO + NO2), OH and HONO. Reactive hydrogen emissions (the

sum of OH and HONO) are 5% of the NOx emission from both aircraft,

the factors that control OH and NOx emissions from each engine are

measurements of OH imply that only a small fraction of NOx (5%) and

oxidized in the the plume of the Concorde. These measurements constrain

rates of nitric and sulfuric acid particles in the plume that may partially

perturbation to stratospheric ozone by a fleet of super-sonic aircraft.

indicating that

similar. The

SO 2 (1%) are

the production

determine the ,

Introduction

The emissions from a proposed fleet of commercial high speed civil transports

(HSCT's) may alter the distribution of stratospheric ozone. In 1971 concerns that reactive

nitrogen (NOx) emissions would substantially deplete ozone helped deter the

development of HSCT's in the U. S. Recent observations of the exhaust from an Air

France Concorde during supersonic flight in the lower stratosphere showed that the

measured NOx concentrations agreed well with predictions based on ground-based tests

performed in the early 70's. However, the number of volatile particles measured

(assumed to be sulfate aerosols) is substantially higher than expected. Reactions on

sulfate aerosols regulate the abundance of the hydrogen, halogen, and nitrogen radical

families that catalyze ozone loss. Perturbations to the global aerosol distribution by a

proposed fleet of HSCT's could lead to a level of ozone depletion comparable to that

expected from NOx emissions alone. It has long been assumed that the initial step in

sulfate aerosol formation is the oxidation of emitted SO2 in the aircraft exhaust wake.

Estimates of oxidation rates range from significant to insignificant values, depending on

the assumptions of the chemistry of OH. We present observations of OH in the wake of

the Concorde. The measured concentrations of OH are insufficient to account for the

particle numbers reported by Fahey, et. al.

Recent in situ measurements of the Concorde exhaust determined the emissions of

some key exhaust species: CO 2, H20, NO, NO 2, CO (3). The agreement between the in

situ measurements and extrapolations from ground based tests establishes a high level of



confidence in the methods that will be used to predict emissions of these species from

new engine designs. However, the concentrations of highly reactive emissions, such as

reactive hydrogen (HOx = H, OH, HO2), are difficult to measure accurately in test

chambers. Other species, such as nitric acid (HONO 2) and sulfuric acid (H2SO4), will

form in the exhaust plume after emission, thus their concentrations are nearly impossible

to measure in test chambers. The lack of experimental data has resulted in decades of

speculation based on models of aircraft plume chemistry in which acid production rates

range from insignificant (4) to significant (5,6) values depending on the assumptions of

the chemistry of HOx in each model.

Knowledge of the production of these species from HSCT exhaust is required due to

their important role in heterogeneous processes contributing to ozone loss. Sulfuric acid

is the precursor to sulfate aerosols that participate in the partitioning of reactive nitrogen

species (NOy = NOx + HONO 2 + N205 + HO2NO2 + ClONO2.-.). Nitric acid can

potentially form acidic particles that contribute to the partitioning of halogen species

(7,8). Since particle formation rates are non-linear with respect to acid concentrations the

net perturbation to heterogeneous chemistry from aircraft emissions in the lower

stratosphere will depend on local plume chemistry where acid concentrations are high.

For example, the calculated perturbation to sulfate aerosol surface area from a fleet of 500

HSCT's depends on whether sulfate aerosols form within the plume or whether emitted

sulfur accomodates on preexisting particles (3). Similarly, the probability of nitric acid

particle formation increases dramatically if high concentrations of nitric acid are formed

in the plume prior to dispersal (6).

The evolution of OH in the plume will determine the production rate of nitric and

sulfuric acid before the plume disperses. As shown in Fig. 1, reactive hydrogen is emitted

as OH and nitrous acid (HONO), which is formed in the engine exhaust via (9):

OH + NO + M --> HONO (1)

Within seconds of emission, the emitted OH completely reacts with emitted NO to form

HONO. During daylight, HONO is photolyzed to OH and NO with a time constant of 6

minutes (10). Hence, HONO acts as a temporary reservoir for the OH produced in the

engine.

The production of nitric and sulfuric acid in the plume occurs as the plume ages

through the reactions:

OH + NO 2 + M -+ HONO 2 (2)



OH + SO 2 + M _ HOSO 2 _SO 3 n20 > H2SO 4 (3)

In reaction 3, ttOSO 2 is quickly converted to the more stable SO3, which is converted to

H2SO 4 (t 1). Measurements of OH can be used to calculate the amount of nitric and

sulfuric acid formed in the plume and to show that these formation rates decrease to

background levels within an hour. In addition, simultaneous measurements of the

chemical species that contribute to plume chemistry can confirm the chemical description

in Fig. 1 and establish an empirical basis for the models predicting plume chemistry and

dynamics.

HOx Measurements

The measurements presented here were obtained aboard the NASA ER-2 during

the 1994 Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing

the Effects of Stratospheric Aircraft (ASHOE/MAESA) campaign in Christchurch, New

Zealand. The instrument payload included instruments measuring most of the species

necessary to empirically test HOx chemistry: NO, NO 2, NOy, BrO, C10, OH, HO 2, H20,

03, CH 4, CO, pressure, temperature, and spectrally resolved radiation fields.

The HOx instrument is described in detail by Wennberg, et al. (12). Briefly, a

controlled flow of air is ducted into the nose of the ER-2. The OH radical is measured in

a wall-less sampling region by laser induced fluorescence (LIF) and HO 2 is measured

after chemical conversion to OH by reaction with NO. The residence time of OH in the

sampling region is less than 1 ms and the LIF signal is recorded at 8 Hz. At ER-2

cruising speed this sampling rate corresponds to 25 m spatial resolution. The precision

and accuracy (lc_) of the OH and HO 2 measurements at 8 Hz are 0.1 ppt, +30% and 0.2

ppt, +40%, respectively. The HOx instrument was modified prior to the

ASHOE/MAESA campaign to provide simultaneous measurements of OH and HO 2 with

two identical LIF detection axes (13).

The encounter with the Concorde was arranged by ER-2 and Air France pilots and

operations personnel. The encounter began at approximately 2:45 pm local time on

October 8, 1994 above the east coast of New Zealand. A few minutes after the Concorde

passed the prearranged rendezvous, the ER-2 traced a 320 km portion of the Concorde

flight path three times in 90 minutes and crossed the exhaust plume at least 1t times.

During the return into Christchurch the ER-2 crossed its own wake after a turn. Data for



OH and HO 2 were obtained for 5 of the Concorde plume crossings and the single ER-2

plume crossing. The age of the plume at each intercept is determined from position

information provided by the Concorde pilots, a ground based radar tracking station, and

the ER-2 instrumentation. The plume intercepts occurred at 16.2 km altitude (100 mbar)

where the temperature was 222 K. Three of the intercepts correspond to emission during

the Concorde cruise at Mach 2 and two correspond to emission at Mach 1.7.

Figure 2 shows the OH and HO 2 mixing ratios measured during three crossings of

the Concorde exhaust plume (a-c) and the single encounter with the ER-2 plume (d). The

encounters occurred at Greenwich times of 10384 s, 12697 s, 12964 s, and 15564 s. The

plumes ages are 16, 60, and 66 minutes for the Concorde and 10 minutes for the ER-2.

The OH measurement shows that the profile of the plume is quite uniform and has very

sharp edges, especially the largest Concorde plume shown in Fig. 2a. The duration of

this plume is 2.65 s, which corresponds to a 530 m cross section of the plume. If a 30 °

angle of incidence between the ER-2 and Concorde flight tracks is assumed, the plume is

roughly 265 m wide.

As the plume ages, the concentration of OH falls markedly. In the young plumes

(eg. Figs. la and ld) the concentration of OH is above ambient because the production of

OH from the photolysis of HONO is large. In the older plumes (eg. Fig. lc) the

concentration of OH decreases because the concentrations of HONO are diminished and

the loss rate of OH due to reactions 1 and 2 is still large (14). The small concentration of

HO 2 in the plume results from a change in the partitioning of HOx (15). HO 2 is

converted to OH via the reaction

HO 2 + NO --_ NO 2 + OH (4)

The high concentrations of NO in the plume shift the partitioning of HOx towards OH

because the concentrations of species that convert OH to HO 2 (0 3 and CO) do not

increase above background levels inside the plume. The concentrations of NO are much

lower in the ER-2 plume (Fig. ld), thus a much smaller change in the partitioning

between OH and HO 2 is observed.

The Hydrogen Radical Emission Index

Because of the short lifetime of OH in the atmosphere, we expect the OH that is

emitted from the engine to disappear within a few seconds after emission. The observed



increase in the concentrations of OH within the plume 1000 seconds after emission

indicates that there is a significant amount of HONO in the plume at the time of

measurement. We can infer the concentration of HONO in the plume by comparing

production and loss rates calculated with a steady state photochemical model. We

calculate the rates outside the plume as well in order to test the steady state model. Since

the lifetime of OH is short, production and loss rates calculated with this model should be

equal. For the calculation inside the plume, we determine the concentration of HONO

required to balance production and loss rates.

The production and loss rates of OH during plume #3 (Fig. la) calculated using

measurements obtained aboard the ER-2 (16), rate constants from DeMore et al. (17), and

photolysis rates calculated with a radiative transfer model (18) are listed in Table 1.

Outside the plume the agreement between production and loss rates is excellent. This

agreement is consistent with the steady state condition and indicates that the chemistry

used in the model sufficiently describes the production and loss rates of ambient OH.

Inside the plume, loss rates increase by two orders of magnitude due to the large increases

in NO and NO 2 concentrations, but the increase in production rates due to background

species (H20, HO2NO 2, H2CO ) is small. In order to balance the increase in loss rates a

large amount of HONO must be added to the model. The concentration of HONO in the

plume inferred from this comparison is 165 + 65 ppt (lc_). Since the loss rates of OH in

the plume are dominated by reactions 1 and 2, the uncertainty of this estimate of HONO

is determined by uncertainties in the OH, NO, and NO 2 measurements, rate constants of

reactions 1 and 2, and the photolysis rate of HONO. The contribution of other sources of

OH formed in the exhaust are neglected in this estimate, but will be addressed in detail

below.

The amount of HONO formed in the exit plane of the engine from emitted OH

can be determined once the loss rate of HONO in the plume is known. Because of the

high concentrations of NO and NO 2 in the plume the net loss rate of HONO is described

by HONO, OH, and NOx chemistry. HONO is lost through photolysis and regenerated

through reaction 1. The net sink for HONO is nitric acid:

hv
--÷ NO 2

HONO OH HONO 2 (4)

NO

The net loss rate for HONO in the plume is the fraction of photolyzed HONO that forms

nitric acid multiplied by the photolysis rate:



k 2 [OH][N02 ]
loss110N 0 = x J fIONO [ HONO ] (5)

k I [OH][NO] + k 2 [OH][NO 2 ]

The concentration of HONO formed in the exhaust via reaction 1 can be

estimated by integrating the loss rate of HONO over the age of the plume and correcting

for the effects of dilution. This amount of HONO corresponds to the sum of emitted OH

that forms HONO via reaction 1 after emission and any HONO that might be directly

emitted from the engine (19). We represent this sum (OH + HONO) as HOy. Dilution

effects can be removed by referencing to a conserved tracer, such as NOy:

HOy _ I; lOSSHoNodt

NOy NOy
(6)

For the conditions of plume #3 the amount of HOy at the time Of exhaust is 0.045xNOy.

The uncertainty of the estimate of the amount of HOy emitted from the engine

calculated from Eq. 6 depends on the fraction of emitted OH that forms HONO. The

extremely fast reactions of OH with NO and NO 2 and the high levels of NOx in the

plume ensure that nearly all of the emitted OH will react with NOx. The oxidation of

SO 2 discussed below is catalytic with respect to OH (11) and would not account for OH

loss even if sulfur emissions were as large as NOx emissions. The main uncertainty is

whether the emitted OH reacts with NO or NO 2. Ground based test cell measurements of

the Olympus engine indicate that NO 2 is only 4% of total emitted NOx at the engine exit

plane (20). Based on the rates of reactions 1 and 2, this fraction of NO 2 contributes an

additional uncertainty of +10% to the ratio HOy/NOy calculated from Eq. 6, resulting in a

net uncertainty of +50% (1_). If other loss processes for emitted OH occur, the amount

of OH estimated from equation 6 will be a lower limit.

The time evolution of OH in the plume was calculated with an integrating

photochemical model. The model exactly solves the coupled differential equations that

control OH concentrations. The inputs to the model are measured concentrations and

temperatures, calculated photolysis rates, and the concentration of HONO calculated from

Eq. 6. The results using initial HOy/NOy = 0.045 and the conditions measured for plume

#3 are shown in Figure 3a. The first data point corresponds to the OH concentration



measurcd for plume #3. The other data points correspond to OH concentrations measured

during later encounters, scaled by the amount of NOy in the plume to account for

dilution. The agreement of this model with the measured OH for plume #3 shows that the

assumptions in the calculation of HONO discussed above are consistent, at least for the

early plumes. Contributions to HOx chemistry from species other than HONO and NOx

are only few percent at 15 minutes after emission. The curvature after 30 minutes occurs

because other processes, mostly HO2NO 2 photolysis, contribute to the production of OH.

However, the rates of these processes are small compared to the loss rates due to reaction

2, and the concentration of OH drops significantly below background levels (see Fig. 2c).

The decrease in the concentration of OH after 30 minutes has important

implications for the chemistry of OH within the plume. That is, the enhancement of

oxidation rates due to OH in the plume is complete within 30 minutes or so. To illustrate

this point, Figs. 3b and c show the fractions of emitted NOy and SOx that are oxidized by

OH within the plume via reactions 2 and 3. Roughly 5% of NOx and 1% of SOx are

oxidized by OH in the plume, mostly within the first 15 minutes. An additional 0.8% of

SOx would be oxidized prior to HONO formation if all the HOy were emitted as OH.

The small fraction of oxidized NOx is consistent with the near unity NOx/NOy ratio

measured by Fahey, et al. (3).

After 60 minutes, most of the HONO is gone, and OH production rates return to

background levels (~5 ppq/s). Since the oxidation rates of NO 2 and SO 2 are limited by

the OH production rate, the maximum oxidation rate of NO 2 and SO 2 is only -5 ppq/s for

plume ages greater than 1 hour. At these rates NOx and SOx will have a lifetime with

respect to OH oxidation determined by the photochemistry of the stratosphere and not the

local chemistry within the plume. For aircraft emissions occurring during the night gas-

phase oxidation of NO 2 and SO 2 may not occur, and the heterogeneous removal of

HONO by sulfate aerosols may become important (10).

Discussion

Table II summarizes the measurements of the Concorde and ER-2 exhaust

plumes. The Concorde encounters include exhaust emitted at Mach 2 (#3) and Mach 1.7

(#4 and #5). The ER-2 emission indices represent an average of 3 plume encounters

during SPADE (21) and 4 encounters during ASHOE/MAESA. The HOy/NOy ratio

calculated from Eq. 6 and the emission indices (EI) of NOy, expressed in grams of NO 2,



and ItOy, in grams of OH per kilogram fuel are listed. Since essentially all of the HOy

emitted from the engine is converted to HONO 2, the HOy/NOy ratio represents the

fraction of emitted NOy converted to nitric acid in the plume. These ratios are consistent

with the near unity NOx/NOy ratios reported for these encounters (3). Both the HOy EI

and the NOy EI (3,22) are substantially smaller for the ER-2 and Mach 1.7 cases than for

the Mach 2 case. This trend is consistent with the strong temperature dependence of OH

and NO emission indices (23,24). The Concorde engine (Olympus 593, exhaust gas

temperature (EGT) = 680°C) runs hotter than the ER-2 engine (Pratt & Whitney J75,

EGT -- 600°C) and produces substantially more NO in the exhaust (3,22).

Interestingly, the HOy/NOy ratios are nearly constant for both engines and both

operating conditions of the Concorde. This result indicates that the factors that control

OH and NO emission have similar temperature dependencies- a result that is not obvious,

considering the complexity of the chemistry involved inside the engine. Whether

HOy/NOy is constant in general is worth investigating because this ratio determines the

fraction of NOx that is oxidized in the plume. Efforts are currently underway to develop

HSCT engines with significantly lower NOy EI's than the Concorde Olympus 593 (25).

If HOy emissions do not scale similarly to NOy emissions, there will be different

oxidation ratios in the plume. Since HOy determines the amount of nitric acid in the

plume, the probability of nitric acid particle formation will depend on HOy emission

levels (6). Thus, the probability that nitric acid particles form before the plume disperses

will not decrease unless HOy emissions are lowered as well.

Measurements of particle numbers in the Concorde plume, thought to be

composed of primarily sulfuric acid aerosols, imply that at least 10-40% of sulfur in the

fuel is oxidized to H2SO 4 (3). However, HOx measurements suggest that only 1-2% of

SO 2 is oxidized by OH via gas-phase reactions in the plume. Thus, a clear discrepancy

exists between the amount of H2SO 4 inferred from particle measurements and the amount

of sulfur that can be oxidized by OH in the plume. The discrepancy could be resolved if

the particles are not composed primarily of H2SO 4 or if the sulfur is oxidized in the

engine prior to emission. It is important to determine whether large amounts of sulfur are

oxidized in the engine and if this oxidation will occur for low NOx engines as well.

Whether sulfur is emitted as SO 3, which quickly forms H2SO 4 (11), or as SO 2 will

determine whether sulfate aerosols form in the plume or long after the plume disperses.

This formation rate directly affects the size distribution of sulfate aerosols, and will

determine the impact of sulfate emissions on global aerosol surface areas (3).



Table 1.
partsperquadrillion (1 ppq= 10-15mol/cm3)persecond.

Backgroundrate(ppq/s) %of total

Productionandlossratesof OH for theconditionsof plume#3. Ratesarein

OH Production
Plume rate (ppq/s) % of total

HONO 2 + hv 1.06 26 1.4 0

H2CO + hv 1.06 26 3.0 1

O (1D) + H20 0.88 22 1.0 0

HONO + hv 0.39 10 447 98

HO2NO 2 + hv 0.33 8 2.9 1

total 4.24 455

OH Loss

OH + HO 2 0.97 21 1.6 0

OH + NO 2 0.88 19 258 57

OH + HONO 2 0.85 19 4.2 1

HO 2 + NO 2 0.67 14 11.8 3

OH + NO 0.39 9 155 34

OH + HO2NO 2 0.36 8 9.7 2

total 4.54 455

[HONO2] is inferred from the NOy measurement. [H2CO], [HO2NO2] , and [O(1D)] are

calculated from steady-state relations. [H20], [OH], [NO2], and [NO] are measured.
[HONO] is calculated as described in the text.
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TableII: RelativeHOx emissionindices:
EI NOy

Concorde Age (min.) HOy/NOy (gNO2/kgfuel)

#3 16 0.045 23
#4-5 19 0.051 10
ER-2 8- 14 0.035 3-5

EI HOy
(gOH/kgfuel)

0.35+ 0.15

0.2_+0.1

0.06 + 0.02
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Figure I. A schematicof the evolution of HOx chemistrywithin the engineexhaust

plume. Theplumeis separatedinto a HONOformationregion,whereOH is sequestered
into HONO on a fast time scale,followed by a HONO photolysis region,whereOH is

producedon a slower time scale. Reactivehydrogenis emitted at theexit planeof the

engineprimarily asHOy (OH + HONO). Within secondsof emissionmostof the OH in
the exhaustreactswith NO to form HONO. Only small amounts of OH reactwith

emittedNO2 andSO2 to form HONO2 andHOSO2 (Eqs.2-3) before HONO is formed.
Themajority of OH plumechemistryoccurson a muchslower time scale,minutesafter

the emission. HONO is photolyzed,producingOH which reactswith NO2 and SO2.

Eventually,mostof theHOy emittedfrom theengineisconvertedto HONO2.

Figure 2 OH (solid line) and HO2 (brokenline) mixing ratios measuredduring three

crossingsof the Concordeexhaustplume(a-c) andthe single encounterwith the ER-2
plume (d). The gaps in the data occur during backgroundcalibration of the OH

flourescencesignaland(in panelc) duringa calibrationof the chemicaltitration of HO2.
TheencountersoccurredatGreenwichtimesof (a) 10384s, (b) 12697s, (c) 12964s,and

(d) 15564s. Theplume agesare16,60,and66minutesfor theConcordeexhaustand10
minutes for the ER-2 exhaust. Meteorological conditions were: altitude 16.2 km,

temperature222 K, and pressure100 mb. The Concorde plumes correspond to
encounters3, 9, and 11observedbytheNOy instrument(3).

Figure 3 (a) Time evolution of OH producedfrom HONO photolysis in the Concorde

plume. The five measurements(solidcircles)arescaledrelativeto theamountof NOy in
eachencounter.The error barsarethe 2cyuncertaintiesof the measurements.The solid

line is the result of the integratingmodel with HONO/NOy = 0.04. The dotted line
correspondsto the0.3 ppt backgroundlevelof OH. Oxidationof (b) NO2 --+HNO3 and

(c) SO2 --+SO3in theplume is shownversusplumeage. Theoxidation ratio is theratio
of emittedNOy or SOx that is oxidizedby emittedOH to the total NOx or SOxemitted

from theengine. Thesolid line representstheoxidationratio for HOy/NOy = 0.05. The

shadedregion includes the 1_ uncertaintyof the calculation. The dashedline in (c)

representstheoxidationratio of SOxassumingall HOy isemittedasOH. The maximum
of theshadedregion in (c) includesthisoffset.
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